
LOS CIRCUITOS ELÉCTRICOS

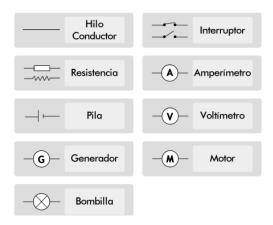
¿Qué es un circuito eléctrico?

Se denomina así a la trayectoria cerrada que recorre una corriente eléctrica. Este recorrido se inicia en una de las terminales de una pila, pasa a través de un conducto eléctrico (cable de cobre), llega a una resistencia (foco), que consume parte de la energía eléctrica; continúa después por el conducto, llega a un interruptor y regresa a la otra terminal de la pila.

Elementos básicos de un circuito eléctrico

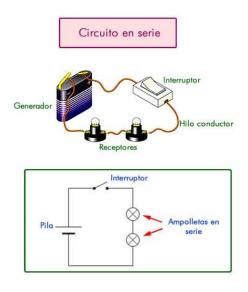
- **Generador de corriente eléctrica** (pila o batería): Fuente de energía que genera un voltaje entre sus terminales logrando que los electrones se desplacen por el circuito.
- **Conductores** (cables o alambre): Llevan la corriente a los demás componentes del circuito a través de estos cables. Los cables están formados por uno o más alambres hechos de un material conductor.
- **Interruptor**: Dispositivo de control, que permite o impide el paso de la corriente eléctrica a través de un circuito, si éste está cerrado y que, cuando no lo hace, está abierto.
- Receptores: Son los encargados de recibir y transformar la energía eléctrica en otro tipo de energía.

Un receptor se caracteriza por su resistencia ohmica. Consume energía eléctrica aportada por la fuente de tensión, y la transforma en otra forma de energía, produciendo un efecto útil como puede ser luz, calor, etc.

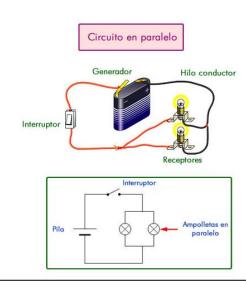

Un ejemplo de receptor son las **ampolletas**, que transforman la energía eléctrica en energía radiante. Otro ejemplo es un motor eléctrico, que transforma la energía eléctrica en energía cinética.

- Resistencia eléctrica se define como la mayor o menor oposición que presentan los cuerpos al paso de la corriente eléctrica. Es decir, la dificultad que opone un conductor al paso de la corriente eléctrica. Se representa por "R" y su unidad es el Ohmio (Ω) .

Los elementos de un circuito se combinan de diferentes maneras. Estos deben formar una trayectoria cerrada para que la corriente eléctrica pueda circular.


Existen otros dispositivos de control llamados **fusibles (tapones automáticos)**, que pueden ser de diferentes tipos y capacidades. **Un fusible** es un dispositivo de protección tanto para ti como para el circuito eléctrico.

Simbología de los circuitos



Tipos de circuitos eléctricos

Dependiendo de la manera en que se conectan los componentes de un circuito, estos pueden estar conectados **en serie**, **en paralelo** y de manera mixta, que es una combinación de estos dos últimos.

- ♦ Los componentes están conectados de modo que las cargas eléctricas circulan por un solo trayecto.
- ◆ La corriente eléctrica es la misma en cada componente
- ♦ Si conectamos varias ampolletas en serie, estamos aumentando la resistencia, por lo que como resultado, disminuye la corriente eléctrica y la intensidad de luz en cada ampolleta baja notoriamente.
- ♦ Una desventaja es que si se corta el paso de

- ♦ Los componentes están conectados de modo que se presenta más de un camino para el paso de las cargas eléctricas
- ♦ Cada ampolleta está conectada directamente a la pila, de modo que todas tienen el mismo voltaje.
- ♦ Al aumentar la cantidad de ampolletas en paralelo, no aumenta la resistencia, sólo disminuye la corriente, por lo que cada ampolleta brilla con igual intensidad.
- ♦ Los circuitos de nuestras casas son en paralelo, modo de conectar distintos aparatos eléctricos que requieren distinta corriente para funcionar.
- ♦ Cada aparato eléctrico presenta a su vez un interruptor y puede prenderse o apagarse independientemente del resto.

Una **corriente eléctrica** es un flujo de electrones que circulan a través de un material conductor. Se define también como el transporte de carga eléctrica de un punto a otro.

MATERIALES

- Pila de petaca
- Cable de electricidad
- Sócate (portabombillas)
- Interruptor
- Bombilla
- Cinta aislante
- Tijeras
- Destornillador

PASOS

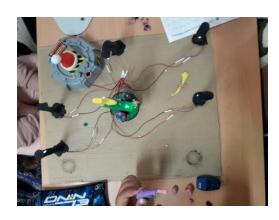
- 1º) Pegar pila, sócate e interruptor en una tabla, cartón o plástico.
- 2º) Cortar cables eléctricos de acuerdo a las medidas que requiera. Pelar todos los extremos.
- 3º) Unir un cable al polo negativo de la pila y el otro extremo unirlo al interruptor. Mantener el interruptor apagado, de esta forma la corriente no fluirá y podrá seguir conectando cables con seguridad.
- 4º) Unir un extremo de otro cable al interruptor y el otro extremo al sócate.
- 5º) Unir un extremo de otro cable al polo positivo de la pila y el otro extremo al sócate.
- 6º) Colocar la bombilla en el sócate.
- 7º) Probar el encendido de la luz con el interruptor.

VIDEOS

https://www.youtube.com/watch?v=xzcE6r 2d0 Circuito Básico Eléctrico 8:46
https://www.youtube.com/watch?v=4EO7NGO2cHQ Circuito Eléctrico (En Serie y Paralelo) 4:45

PASOS A SEQUIR EN EL CIRCUITO DE LA ILUMINACIÓN DE UNA CIUDAD

1. Distribuir en la base de cartón los elementos que vamos a colocar.


2. Colocar el cable y la bombilla en las farolas.

3. Poner las farolas en la base de cartón.

4. Diseñar edificios con cajas de tetrabrik y colocar las bombillas en el árbol de Navidad.

5. Conectar las farolas con el árbol de Navidad.

6. Distribuir los edificios en la base de cartón.

7. Extender la plastilina sobre la base de cartón y comprobar que se encienden las farolas y el árbol de Navidad cuando se le da al interruptor.

Distintos modelos de circuitos eléctricos que salieron

Detrás del circuito

Delante del circuito

