1º CFGM/S SMR/DAM NOMBRE MÓDULO

PRÁCTICA: CREACIÓN Y CONFIGURACIÓN DE VLAN CON SWITCH GESTIONABLE REDES LOCALES

1º CFGM/S SMR/DAM NOMBRE MÓDULO

1. INTRODUCCIÓN

Como ya hemos visto, las **VLANs** permiten que un administrador de red cree grupos de dispositivos conectados a la red de manera lógica que actúan como si estuvieran en su propia red independiente. Cuando se configura una VLAN, puede ponerse un nombre para describir la función principal de los usuarios de esa VLAN. Además debemos indicar que puertos del (o los) swtiche(s) pertenecen a cada VLAN, así como indicar los puertos que reservamos para la comunicación entre switches

2. CONTENIDOS A TRABAJAR

Segmentación del tráfico dentro de una red local mediante la creación y administración de VLANS. Esta tarea incluye:

- Creación de VLANS en un switch gestionable.
- Administración de VLANs asignando los puertos que pertenecen a cada VLAN
- Administración de puertos reservados para la configuración y la comunicación entre switches que trabajan con VLAN

3. TAREAS

Utilizando nuestro switch D-Link 1210 de nuestro armario Rack vamos a crear 2 Vlan para segmentar el tráfico de nuestra red

1. Conexión de los equipos al armario rack

- **1.1.** Conecta 5 equipos al armario rack usando las conexiones de los puertos 1,2,3,12 y 13 del primer patch panel
- **1.2.** Usando latiguillos conecta estos puertos con sus puertos correspondientes del switch D-Link 1210.
- 1.3. Configura las direcciones ip de los equipos dentro de la red 172.31.10.0/24
- 1.4. Comprueba que hay comunicación entre los equipos mediante el comando ping

- 2. Acceder al panel de configuración web del switch
 - **2.1.** Desde el equipo conectado al puerto 1 accede mediante un navegador web al switch (por defecto en la IP 172.31.10.1)

DG5-1216T	4				
D-Link				Sma	9 192 168 0.33
COS-12161	IEEE 802.10 VLAN Co	nfiguration		_	 Sufequard
Justo Prane W2210 VLAN 00210 VLAN True KAP Shooping 00210 Spaning Tree Root Manuals	Asymmetric VLAN: [Example] Note: After enabling Asymmetric VID: VLAN Name 21 Deduct	C Enabled Obsabled VLAN by clicking the "Apply" button, use Untapped VLAN Ports 01,02,03,04,05,06,07,06,	rs can configure PVID in the following w Tooged VLAN Ports	ndow. VLAN Rename	Celete VID
Power Saving		09,10,11,12,13,14,15,16		CARGAGE	

3. Creación de las VLAN en el switch

- 3.1. Accede al menú de configuración de vlan en el menu de la izquierda en la opción Cofiguration→802.1Q VLAN, como puede verse en la imagen anterior.
- 3.2. Vamos a crear 2 VLAN nuevas: Roja y Azul, para esto pulsamos el botón
 Add VID y en el formulario que nos aparece añadimos la VLAN Roja con id
 02 y pulsamos aplicar. Repetimos la operación para crear la VLAN 03 Azul
- 4. Asignar y configurar cada puerto a su VLAN correspondiente.
 - **4.1.** Como habrás visto, ya existe una VLAN definida, esta la vamos a mantener intacta y reservada para el acceso y gestión del switch por el puerto 1. Para editar la VLAN pulsamos sobre el ID de esta VLAN (01)
 - **4.2.** Como puede verse en la siguiente imagen tenemos que categorizar cada uno de los puertos en una de las tres categorías disponibles: tag, untag y not member

/ID Co	nfiguration						
VID							
VLAN Na	me						
Port	Select All	01	02	03	04	05	06
Untag	All	0	۲	۲	۲	۲	۲
Tag	All	0	0	0	0	0	0
Not Member	All	0	0	0	0	0	0
							1

Cada una de estas opciones significa lo siguiente:

Untag: Puerto perteneciente a la VLAN en la que nos encontramos y de uso exclusivo para tráfico de esta VLAN (El equivalente a acces en packet tracer)

Taq: Puerto perteneciente a esta VLAN pero de tráfico etiquetado, es decir que este puerto puede enviar tráfico de esta VLAN y de otras para comunicar switches (Es el equivalente a **trunk** en packet tracer) **Not Member:** Este puerto no pertenece a esta VLAN.

4.3. A continuación asigna los puertos del switch a cada VLAN de la siguiente forma:

Vlan 01 Default: Vamos a mantener esta VLAN para acceder al switch solo en el puerto 01. Así que etiqueta el puerto 1 en Untag y el resto de puertos en Not Member

Vlan 02 Roja: A esta vlan van a pertenecer los puertos 2-11 y el 24 para comunicación con otros switch, es decir: 2-11 Untag, 1,12-23 Not Member y 24 Tag

Vian 03 Azul: A esta vian van a pertenecer los puertos 12-23 y el 24 para comunicación con otros switch, es decir: 12-23 Untag, 1-12 Not Member y 24 Tag

- **4.4.** Guarda los cambios y cierra el navegador.
- **5.** Comprueba que todo funciona correctamente y que solo hay comunicación entre las vlan correspondientes realizando las siguientes comprobaciones:
 - **5.1.** El equipo conectado al puerto 1 puede seguir accediendo a la pantalla de configuración del switch pero no tiene comunicación con el resto de equipos, es decir no puede hacer ping
 - **5.2.** Los equipos conectados a los puertos 2 y 3 si pueden hacer ping entre ellos pero no con el resto
 - **5.3.** Los equipos conectados a los puertos 12 y 13 si pueden hacer ping entre ellos pero no con el resto
- 6. Devuelve el switch a su configuración original y desconecta los equipos del rack .

1º CFGM/S SMR/DAM NOMBRE MÓDULO

4. CONCLUSIONES

Con esta tarea hemos podido ver de forma práctica como segmentar el tráfico de una red local de forma lógica y centralizada mediante la administración de un switch gestionable creando VLANs para la segmentación de la red.

Esto supone una gran ventaja mediante a otros métodos de segmentación de la red como las subredes ya que nos permite gestionarlo de forma centralizada y de forma mucho más sencilla que con el calculo de subredes y asignación de IP y máscaras. Además si queremos implementar una red aún más segura estas 2 técnicas (VLAN y subredes) son totalmente compatibles y se pueden implementar a la vez.