

DEPARTAMENT OF PHYSICS AND CHEMISTRY

Group:	2º ESO	Date:			
Content:	Unit 4 – Structure of matter 5: Introduction to the periodic system. 6: Chemical bonds				
Subject:	Physics and Chemistry				
Student:					

5. INTRODUCTION TO THE PERIODIC SYSTEM

The periodic table is a way to organize the elements. It was proposed by Dmitri Mendeleyev and Julius Lothar Meyer. Nowadays, there are 118 elements in the periodic table and we can classify them into 4 different types:

METALS	NON-METALS	NOBLE GASSES
- They are shiny .	- They are dull (not shiny).	- They are practically inert.
- They are solid at room temperature, except mercury, which is liquid.	- They are solid , liquid or gases at room temperature.	- They are all gases.
		- They are insulators.
- They are good conductors of both heat and	- They are poor conductors of heat and	All poble gases have the
electricity.		maximum number of electrons
- They can be bent without breaking (they are	- They are weak and brittle.	possible in their outer shell (2 for
malleable and ductile). They are hard and	They tend to catch electrons and	helium, 8 for all others) making
Strong and they have a high density.	become negative ions (anions).	
- They tend to release electrons and become		- They are Helium (He), Neon
positive ions (cations).	- Examples: Fluorine (F), Sulfur (S),	(Ne), Argon (Ar), Krypton (Kr),
- Examples: Sodium (Na), Iron (Fe), Copper (Cu).		
		Ne

There is a fourth type: the **METALLOIDS**. They are elements with properties which are a mixture from metals and non-metals. Some metalloids are Boron (B), Silicon (Si), Germanium (Ge), Arsenic (As), Antimony (Sb), Tellurium (Te), Polonium (Po) and Astatine (At).

This **classification** based on the metallic and non-metallic elements is too simple. Nowadays we use two criteria to group the elements:

Increasing atomic number \rightarrow Rows called PERIODS Similar physic and chemical properties \rightarrow Columns called GROUPS

6. CHEMICAL BONDS: MOLECULES AND CRYSTALS

Pure compound substances are made of different or equal types of atoms joined together to each other. The unions of these atoms are called **BONDS**. There are some exceptions to this rule: the noble gasses which they don't make bounds.

Some examples are: 3 atoms of oxygen make an Ozone molecule \rightarrow Ozone gas (O₃) \rightarrow Protective layer of the atmosphere

1 atom of oxygen and 2 atoms of hydrogen make a water molecule \rightarrow Water (H₂O) \rightarrow Indispensable for life

DEPARTAMENT OF PHYSICS AND CHEMISTRY

There are **THREE** different types of bounds based on the type of the element and the chemical form that they acquired:

BOND	ATOMS BONDED	ESTRUCTURE OBTAINED
COVALENT	Non-metal with Non-metal	Molecule or crystal structure
IONIC	Metal with Non-metal	Crystal structure
METALLIC	Metal with metal	Crystal structure

6.1 MOLECULES

Molecules are the minimum amount of a pure substance that it maintains all its properties. For example, the minimum amount of water is a molecule of it (H_2O). Molecules are formed when non-metallic **atoms** are bounded.

A **molecule** consists of two or more atoms of the same element, or different elements, that are chemically bound together. Note that the two nitrogen atoms which comprise a nitrogen molecule move as an unit.

There are small molecules made of a small number of atoms and others with a huge number of them. These last ones are called **MACROMOLECULES**. Examples of molecules: H_2SO_4 , P_4 , CH_4 , CO_2 , H_2O , CH_3OH , CO, N_2

Water H

Carbon monoxide

Carbon dioxide

6.1 CRYSTALS

Crystals are solids that form by a regular pattern of atoms connecting together. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

The smallest group of particles in the material that constitutes the repeating pattern is the **unit cell** of the structure. The unit cell completely defines the symmetry and structure of the entire crystal.

CRYSTALS						
IONIC	COVALENT	METALLIC				
Metal with Non-metal	Non-metal with Non-metal	Metal with metal				
 They dissolve easily in water and other polar solvents. They use to be hard and solid substances with very high melting and boiling point. Dissolved in water or molten, they can conduct electricity. 	 They are insoluble in all solvents. They are very hard and have high melting and boiling points. They do not conduct electricity. 	 They are insoluble in all solvents. They have variable melting and boiling points. They conduct electricity. 				
Salt (NaCl) Na ⁺	Diamond (C)	Iron (Fe)				