Why logarithms?

VOCABULARY \& EXPRESSIONS

Several centuries before the emergence

- POWER: potencia
invented to cope with the enormous operations that had to be done by hand. How? This was done by converting products and quotients into additions and subtractions (which are operations that are much easier to work with than others). To do this, they had to use enormous tables (in very thick books), which contained the logarithms of the factors.

Now that we have calculators, why do we need logarithms? Well, it's mostly a question of culture, but also because we will encounter them in algebraic simplifications and functional expressions in the world of science and technology.

USE OF THE LOGARITHMS

The logarithm base 10 is called the common logarithm and is commonly used in science and engineering. Some examples of this include sound (decibel measures), earthquakes (Richter scale), the brightness of stars, and chemistry (pH balance, a measure of acidity and alkalinity).
The natural logarithm has the numbere as its base; its use is widespread in mathematics and physics, because of its simpler integral and derivative.
The binary logarithm uses base 2 and is commonly used in computer science.

RICHTER SCALE

A logarithmic function that is used to measure the magnitude of earthquakes. The magnitude of an earthquake is related to how much energy is released by the quake. Instruments called seismographs detect movement in the earth; the smallest movement that can be detected shows on a seismograph as a wave with amplitude A_{0}.
The Richter scale measure of the magnitude of the earthquake using the formula:

$$
R=\log \left(\frac{A}{A_{0}}\right)
$$

A - the measure of the amplitude of the earthquake wave
A_{0}-the amplitude of the smallest detectable wave (or standard wave)

LOGARITHMS

In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication.
For example:
The equality $2^{3}=8$ can also be written: $\log _{2} 8=3$.
$\log _{2} 8$ is read "base- 2 logarithm of 8 ".

In words we say: $\log _{a} b \rightarrow$ Base - a logarithm of b
Doing examples:
$\log _{5} 10 \rightarrow$ Base - 5 logarithm of 10
Base - 3 logarithm of $6 \rightarrow \log _{3} 6$
Invent more examples by yourself.

LOGARITHMS WITH CALCULATOR

a) If you have in your calculator the button 1000
b) If you haven' t it: you have to do the base change (base 10 or e) and use the button or In

Logarithms $\log , 0$ and \log buttons

 input square root 5

