MAIN COMPONENTS OF AN EQUATION

$1^{\text {st }}$ member $\quad 2^{\text {nd }}$ member

a) $7 x+z=8 x+9$.
terms
Unknowns: $x, z \quad$ Degree: 1
independent
term
$1^{\text {st }}$ member $\quad 2^{\text {nd }}$ member
b) $x^{2}-2 x=3$
terms
Unknown: $x \quad$ Degree: 2

Identify the main components of these equations:
a) $4 x-7 z=5 x-10$
b) $4 x^{2}-7 x=3 x-8$

TRANSFORMATIONS THAT MAINTAIN THE EQUIVALENCE IN EQUATIONS

TRANSFORMATION

Adding or subtracting the same expressions in the two sides of the equality.

Multiplying or dividing the two sides of the equality by the same number (not zero).

PRACTICAL RULE

The summand in one side becomes the subtracted amount in the other, and vice versa.

The number multiplying in the left side becomes the divisor of the right, and vice versa.

LINEAR EQUATIONS

To solve these equations we use the practical rules:

- $3 x+7=5 x-5+2 x \rightarrow 3 x-5 x-2 x=-7-5 \rightarrow-4 x=-12 \rightarrow$

$$
x=\frac{-12}{-4}=3
$$

- $2(x-4)+3 x=5(2 x+3) \rightarrow 2 x-8+3 x=10 x+15 \rightarrow$

$$
\begin{aligned}
2 x+3 x-10 x & =+8+15 \rightarrow-5 x=23 \rightarrow \\
x & =\frac{23}{-5}=-\frac{23}{5}
\end{aligned}
$$

Solve these equations:
a) $3 x+5(3-4 x)=5 x-4$
b) $10 x+3=5-7 x+3 x$
c) $3-(x+12)=7(2 x-30)+54-3 x$

SECOND DEGREE EQUATIONS OR QUADRATIC EQUATIONS

A quadratic equation with one unknown is an equality between two algebraic expressions that can be written as $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}=\mathbf{0}$ where a, b and c are real numbers and $\mathrm{a} \neq 0$.

If b and c are numbers different to 0 , the equation is complete. In other case, it is incomplete.

INCOMPLETE QUADRATIC EQUATIONS

- If $b=0$, the equation is $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{c}=\mathbf{0}$ There are two solutions or there are no solutions.
- If c $=0$, the equation is $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}=\mathbf{0}$. There are two solutions.
- If $b=0$ and $c=0$, the equation is $\boldsymbol{a} \boldsymbol{x}^{2}=\mathbf{0}$ There are one solution and it is always zero.

COMPLETE QUADRATIC EQUATIONS

To solve these equations we use the formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

HOW MANY SOLUTIONS HAS AN EQUATION?

We use the discriminant which is:

$$
\Delta=b^{2}-4 a c
$$

- If $\Delta>0$, the equation has two solutions.
- If $\Delta=0$, the equation has only one equation
- If $\Delta<0$, the equation has no solutions

Calculate the number of solutions of:

$$
x^{2}-3 x-10=0
$$

$$
\begin{aligned}
& a=1 \quad b=-3 \quad c=-10 \\
& \begin{aligned}
\Delta=b^{2}-4 a c & =(-3)^{2}-4 \cdot 1 \cdot(-10)= \\
& =9-(-40)=49>0
\end{aligned}
\end{aligned}
$$

The equation has two solutions:
Calculate the number of solutions of:
a) $x^{2}-4 x+3=0$
b) $2 x^{2}+4 x+4=0$
c) $7 x^{2}+10=0$

QUADRATIC EQUATIONS

Solve the quadratic equation $x^{2}+2 x-8=0$.
Identify a, b and $c: \quad a=1 \quad b=2 \quad c=-8$

$$
\begin{aligned}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & =\frac{-2 \pm \sqrt{2^{2}-4 \cdot 1 \cdot(-8)}}{2 \cdot 1}=\frac{-2 \pm \sqrt{4-(-32)}}{2}= \\
& =\frac{-2 \pm \sqrt{36}}{2}=\frac{-2 \pm 6}{2} \rightarrow\left\{\begin{array}{l}
x_{1}=\frac{-2+6}{2}=2 \\
x_{2}=\frac{-2-6}{2}=-4
\end{array}\right.
\end{aligned}
$$

The equation has two solutions: $x_{1}=2$ and $x_{2}=-4$.
Solve these equations:
a) $x^{2}-7 x+12=0$
b) $-2 x^{2}+6 x-3=0$
c) $x^{2}-49=0$
d) $2 x^{2}-8 x+8=0$

